# Babylon MCP Server - Development Roadmap ## Vision Build an MCP (Model Context Protocol) server that helps developers working with Babylon.js by providing intelligent documentation search and sandbox examples. The MCP server serves as a canonical, token-efficient source for Babylon.js framework information when using AI agents, while incorporating community feedback to continuously improve search relevance. ## Documentation Source - **Repository**: https://github.com/BabylonJS/Documentation.git - This is the authoritative source for all Babylon.js documentation --- ## Recent Progress (2025-01-23) **Phase 1 Core Features - COMPLETED** ✅ Successfully implemented vector search with local embeddings: - ✅ Installed and configured LanceDB + @xenova/transformers - ✅ Created document parser with YAML frontmatter extraction - ✅ Built indexer that processes 745 markdown files - ✅ Generated vector embeddings using Xenova/all-MiniLM-L6-v2 (local, no API costs) - ✅ Implemented `search_babylon_docs` MCP tool with semantic search - ✅ Implemented `get_babylon_doc` MCP tool for document retrieval - ✅ Added relevance scoring and snippet extraction - ✅ Tested successfully with "Vector3" query **Key Implementation Details:** - Vector database: LanceDB stored in `./data/lancedb` - Embedding model: Runs locally in Node.js via transformers.js - Indexed fields: title, description, keywords, category, breadcrumbs, content, headings, code blocks - Search features: Semantic similarity, category filtering, ranked results with snippets - Scripts: `npm run index-docs` to rebuild index --- ## Phase 1: Core MCP Infrastructure & Documentation Indexing **Goal**: Establish foundational MCP server with documentation search from the canonical GitHub source ### 1.1 MCP Server Setup - [X] Install and configure MCP SDK (@modelcontextprotocol/sdk) - [X] Implement MCP server with HTTP transport (SSE) - [X] Define MCP server metadata and capabilities - [X] Create basic server lifecycle management (startup, shutdown, error handling) ### 1.2 Documentation Repository Integration - [X] Clone and set up local copy of BabylonJS/Documentation repository - [X] Implement automated git pull mechanism for updates - [X] Parse documentation file structure (markdown files, code examples) - [X] Extract metadata from documentation files (titles, categories, versions) - [I] Index Babylon.js source repository markdown files (Option 3 - Hybrid Approach, Phase 1) - [I] Add 144 markdown files from Babylon.js/Babylon.js repository - [I] Include: CHANGELOG.md, package READMEs, contributing guides - [ ] Phase 2: Evaluate TypeDoc integration for API reference - [ ] Create documentation change detection system - [ ] Research and fix Claude Code config file integration issue - CLI `/mcp http://localhost:4000/mcp` works - Config file `~/.claude/config.json` approach does not work - Need to investigate proper config file format for HTTP MCP servers ### 1.3 Search Index Implementation - [X] Design indexing strategy for markdown documentation - [X] Implement vector embeddings for semantic search (using @xenova/transformers with Xenova/all-MiniLM-L6-v2) - [X] Create vector database with LanceDB - [X] Index code examples separately from prose documentation - [ ] Implement incremental index updates (only reindex changed files) ### 1.4 Basic Documentation Search Tool - [X] Implement MCP tool: `search_babylon_docs` - Input: search query, optional filters (category, API section) - Output: ranked documentation results with context snippets and file paths - [X] Return results in token-efficient format (concise snippets vs full content) - [X] Add relevance scoring based on semantic similarity and keyword matching - [ ] Implement result deduplication ### 1.5 Documentation Retrieval Tool - [X] Implement MCP tool: `get_babylon_doc` - Input: specific documentation file path or topic identifier - Output: full documentation content optimized for AI consumption - [X] Format content to minimize token usage while preserving clarity - [X] Include related documentation links in results --- ## Phase 2: Sandbox Examples Integration **Goal**: Enable discovery and search of Babylon.js Playground examples ### 2.1 Playground Data Source - [ ] Research Babylon.js Playground structure and API - [ ] Identify authoritative source for playground examples - [ ] Determine if examples are in Documentation repo or need separate scraping - [ ] Design data model for playground examples ### 2.2 Example Indexing - [ ] Implement scraper/parser for playground examples - [ ] Extract: title, description, code, tags, dependencies - [ ] Index example code with semantic understanding - [ ] Link examples to related documentation topics - [ ] Store example metadata efficiently ### 2.3 Example Search Tool - [ ] Implement MCP tool: `search_babylon_examples` - Input: search query, optional filters (features, complexity) - Output: ranked examples with descriptions and playground URLs - [ ] Return code snippets in token-efficient format - [ ] Add "similar examples" recommendations - [ ] Include difficulty/complexity indicators --- ## Phase 3: Token Optimization & Caching **Goal**: Minimize token usage for AI agents while maintaining quality ### 3.1 Response Optimization - [ ] Implement smart content summarization for long documentation - [ ] Create tiered response system (summary → detailed → full content) - [ ] Remove redundant information from responses - [ ] Optimize markdown formatting for AI consumption - [ ] Add token count estimates to responses ### 3.2 Intelligent Caching - [ ] Implement query result caching (Redis or in-memory) - [ ] Cache frequently accessed documentation sections - [ ] Add cache invalidation on documentation updates - [ ] Track cache hit rates and optimize cache strategy - [ ] Implement cache warming for popular queries ### 3.3 Context Management - [ ] Implement MCP resource: `babylon_context` - Provides common context (current version, key concepts) for AI agents - Reduces need to repeatedly fetch basic information - [ ] Create canonical response templates for common questions - [ ] Add version-specific context handling - [ ] Add resource subscriptions for documentation/source updates - Convert get_babylon_doc and get_babylon_source from tools to resources - Implement file watching for repository changes - Send resource update notifications to subscribed clients --- ## Phase 4: Feedback Collection System **Goal**: Allow users to provide feedback on search result usefulness ### 4.1 Database Design - [ ] Choose database (SQLite for simplicity, PostgreSQL for production scale) - [ ] Design schema for: - Search queries and returned results - User feedback (usefulness scores, relevance ratings) - Query-result effectiveness mappings - Anonymous session tracking ### 4.2 Feedback Submission - [ ] Implement MCP tool: `provide_feedback` - Input: result identifier, query, usefulness score (1-5), optional comment - Output: confirmation and feedback ID - [ ] Store feedback with query context - [ ] Implement basic spam prevention - [ ] Add feedback submission via Express REST API (optional web interface) ### 4.3 Feedback Analytics Foundation - [ ] Create queries for feedback aggregation - [ ] Implement basic feedback score calculations - [ ] Design feedback reporting structure - [ ] Add feedback data export capabilities --- ## Phase 5: Learning & Ranking Optimization **Goal**: Use collected feedback to improve search result relevance ### 5.1 Feedback-Driven Ranking - [ ] Integrate feedback scores into search ranking algorithm - [ ] Implement boost factors for highly-rated results - [ ] Add penalty factors for low-rated results - [ ] Create decay function (recent feedback weighted higher) - [ ] Test ranking improvements with historical queries ### 5.2 Query Understanding - [ ] Analyze successful searches to identify patterns - [ ] Implement query expansion based on feedback - [ ] Add synonym detection for common Babylon.js terms - [ ] Create query-to-topic mapping - [ ] Implement "did you mean" suggestions ### 5.3 Result Quality Monitoring - [ ] Track result click-through rates (if applicable) - [ ] Identify zero-result queries for improvement - [ ] Monitor feedback trends over time - [ ] Create alerts for sudden quality drops - [ ] Implement A/B testing framework for ranking changes --- ## Phase 6: Feature Requests & Community Engagement **Goal**: Enable users to suggest improvements and vote on feature requests ### 6.1 Suggestion Collection - [ ] Extend database schema for feature requests/improvements - [ ] Implement MCP tool: `submit_suggestion` - Input: suggestion text, category (documentation, example, feature) - Output: suggestion ID for tracking - [ ] Add suggestion categorization and tagging - [ ] Implement duplicate detection for similar suggestions ### 6.2 Voting System - [ ] Implement MCP tool: `vote_on_suggestion` - Input: suggestion ID, vote (up/down) - Output: updated vote count - [ ] Design anonymous voting with abuse prevention - [ ] Add vote weight based on user activity (optional) - [ ] Implement vote aggregation and trending calculations ### 6.3 Suggestion Discovery - [ ] Implement MCP tool: `browse_suggestions` - Input: filters (category, status, sort order) - Output: paginated list of suggestions with vote counts - [ ] Add search within suggestions - [ ] Create status tracking (new, under review, implemented, rejected) - [ ] Add suggestion updates and resolution tracking ### 6.4 Community Dashboard (Optional) - [ ] Create web interface for browsing suggestions - [ ] Add suggestion detail pages with discussion - [ ] Implement suggestion status updates by maintainers - [ ] Add notification system for suggestion updates --- ## Phase 7: Advanced Features & Quality **Goal**: Enhance capabilities and ensure production readiness ### 7.1 Multi-Version Support - [ ] Detect Babylon.js versions in Documentation repo - [ ] Index documentation for multiple versions separately - [ ] Add version parameter to search tools - [ ] Implement version comparison capabilities - [ ] Create migration guides between versions ### 7.2 Code-Aware Search - [ ] Implement code pattern search in examples - [ ] Add TypeScript/JavaScript syntax understanding - [ ] Create API signature search - [ ] Add "find usage examples" for specific APIs - [ ] Implement code-to-documentation linking ### 7.3 Performance & Scalability - [ ] Optimize search query performance (< 500ms p95) - [ ] Implement connection pooling for database - [ ] Add request queuing for high load - [ ] Optimize memory usage for large indexes - [ ] Implement graceful degradation under load ### 7.4 Testing & Quality Assurance - [ ] Write unit tests for core indexing and search logic - [ ] Create integration tests for MCP tools - [ ] Add end-to-end tests for critical workflows - [ ] Implement regression testing for ranking changes - [ ] Add performance benchmarks and monitoring --- ## Phase 8: Deployment & Operations **Goal**: Make the server production-ready and maintainable ### 8.1 Deployment Infrastructure - [ ] Create Dockerfile for containerization - [ ] Set up docker-compose for local development - [ ] Implement configuration management (environment variables) - [ ] Create database migration system - [ ] Add health check endpoints ### 8.2 Automation & CI/CD - [ ] Set up GitHub Actions for testing - [ ] Implement automated builds and releases - [ ] Create automated documentation update workflow - [ ] Add automated index rebuilding schedule - [ ] Implement version tagging and release notes ### 8.3 Monitoring & Observability - [ ] Add structured logging (JSON format) - [ ] Implement metrics collection (Prometheus-compatible) - [ ] Create performance dashboards - [ ] Add error tracking and alerting - [ ] Implement trace logging for debugging ### 8.4 Documentation & Onboarding - [ ] Write installation guide for MCP server - [ ] Create configuration documentation - [ ] Document all MCP tools with examples - [ ] Add troubleshooting guide - [ ] Create developer contribution guide --- ## Technical Architecture Decisions ### MCP Implementation - **SDK**: @modelcontextprotocol/sdk (official TypeScript SDK) - **Transport**: HTTP with Server-Sent Events (SSE) on port 3001 - **MCP Endpoint**: `/mcp/sse` - **Tools**: search_babylon_docs, get_babylon_doc, search_babylon_examples, provide_feedback, submit_suggestion, vote_on_suggestion, browse_suggestions - **Resources**: babylon_context (common framework information) ### Search & Indexing (✅ Implemented) - **Vector Database**: LanceDB for vector storage and similarity search - **Embedding Model**: @xenova/transformers with Xenova/all-MiniLM-L6-v2 (local, no API costs) - **Document Parser**: gray-matter for YAML frontmatter + markdown content extraction - **Indexed Documents**: 745 markdown files from BabylonJS/Documentation repository - **Search Features**: Semantic vector search with relevance scoring, category filtering, snippet extraction ### Data Storage (✅ Implemented) - **Vector Database**: LanceDB stored in `./data/lancedb` - **Document Storage**: Local clone of BabylonJS/Documentation in `./data/repositories/Documentation` - **Indexed Fields**: title, description, keywords, category, breadcrumbs, content, headings, code blocks, playground IDs - **Future**: Add Redis for query caching, implement incremental updates ### Token Optimization Strategy - Return concise snippets by default (50-200 tokens) - Offer detailed responses on demand - Cache common context to avoid repetition - Use efficient markdown formatting - Implement smart content truncation ### Security & Privacy - Anonymous feedback collection (no PII) - Rate limiting on all MCP tools - Input validation and sanitization - Secure database access patterns - No authentication required (open access) --- ## Success Metrics ### Phase 1-2 (Core Functionality) ✅ ACHIEVED - ✅ Documentation indexing: 100% of BabylonJS/Documentation repo (745 files indexed) - ✅ Search implementation: LanceDB vector search with local embeddings operational - ⏳ Search response time: Testing needed for p95 latency - ⏳ Search relevance: Initial tests successful, needs broader validation - ⏳ Token efficiency: Needs measurement and optimization ### Phase 3-5 (Optimization & Feedback) - Cache hit rate: > 60% - Feedback collection rate: > 5% of searches - Ranking improvement: Increase in positive feedback over time - Query success rate: < 5% zero-result queries ### Phase 6-8 (Community & Production) - Suggestion collection: Active community participation - Uptime: > 99% - Documentation freshness: < 24 hour lag from repo updates - Test coverage: > 80% of core functionality --- ## Future Enhancements (Post-Launch) - Integration with Babylon.js GitHub issues for additional context - Real-time collaborative debugging sessions - Visual search for shader/rendering effects - Performance optimization recommendations based on best practices - Integration with TypeScript Language Server for IDE features - Multi-language documentation support - Community-contributed solutions and patterns library - Interactive tutorial generation based on user goals