Compare commits
No commits in common. "8ec80e038ac757309a3c5cd438050ada10611c93" and "f5cfaf3420ccf0a6fa82db798ae1ff51b28bbd12" have entirely different histories.
8ec80e038a
...
f5cfaf3420
80
.idea/workspace.xml
generated
80
.idea/workspace.xml
generated
@ -4,7 +4,7 @@
|
|||||||
<option name="autoReloadType" value="SELECTIVE" />
|
<option name="autoReloadType" value="SELECTIVE" />
|
||||||
</component>
|
</component>
|
||||||
<component name="ChangeListManager">
|
<component name="ChangeListManager">
|
||||||
<list default="true" id="dbf015c9-6bab-4a1d-a684-86aeb179d794" name="Changes" comment="Drop 5 initial commit." />
|
<list default="true" id="dbf015c9-6bab-4a1d-a684-86aeb179d794" name="Changes" comment="Whoops" />
|
||||||
<option name="SHOW_DIALOG" value="false" />
|
<option name="SHOW_DIALOG" value="false" />
|
||||||
<option name="HIGHLIGHT_CONFLICTS" value="true" />
|
<option name="HIGHLIGHT_CONFLICTS" value="true" />
|
||||||
<option name="HIGHLIGHT_NON_ACTIVE_CHANGELIST" value="false" />
|
<option name="HIGHLIGHT_NON_ACTIVE_CHANGELIST" value="false" />
|
||||||
@ -16,30 +16,30 @@
|
|||||||
<component name="Git.Settings">
|
<component name="Git.Settings">
|
||||||
<option name="RECENT_GIT_ROOT_PATH" value="$PROJECT_DIR$" />
|
<option name="RECENT_GIT_ROOT_PATH" value="$PROJECT_DIR$" />
|
||||||
</component>
|
</component>
|
||||||
<component name="ProjectColorInfo">{
|
<component name="ProjectColorInfo"><![CDATA[{
|
||||||
"associatedIndex": 2
|
"associatedIndex": 2
|
||||||
}</component>
|
}]]></component>
|
||||||
<component name="ProjectId" id="309B32upqZUCp1oSL3Vdvq62rQH" />
|
<component name="ProjectId" id="309B32upqZUCp1oSL3Vdvq62rQH" />
|
||||||
<component name="ProjectLevelVcsManager" settingsEditedManually="true" />
|
<component name="ProjectLevelVcsManager" settingsEditedManually="true" />
|
||||||
<component name="ProjectViewState">
|
<component name="ProjectViewState">
|
||||||
<option name="hideEmptyMiddlePackages" value="true" />
|
<option name="hideEmptyMiddlePackages" value="true" />
|
||||||
<option name="showLibraryContents" value="true" />
|
<option name="showLibraryContents" value="true" />
|
||||||
</component>
|
</component>
|
||||||
<component name="PropertiesComponent">{
|
<component name="PropertiesComponent"><![CDATA[{
|
||||||
"keyToString": {
|
"keyToString": {
|
||||||
"RunOnceActivity.ShowReadmeOnStart": "true",
|
"RunOnceActivity.ShowReadmeOnStart": "true",
|
||||||
"RunOnceActivity.git.unshallow": "true",
|
"RunOnceActivity.git.unshallow": "true",
|
||||||
"git-widget-placeholder": "main",
|
"git-widget-placeholder": "main",
|
||||||
"last_opened_file_path": "/Users/michaelmainguy/test2",
|
"last_opened_file_path": "/Users/michaelmainguy/test2",
|
||||||
"node.js.detected.package.eslint": "true",
|
"node.js.detected.package.eslint": "true",
|
||||||
"node.js.detected.package.tslint": "true",
|
"node.js.detected.package.tslint": "true",
|
||||||
"node.js.selected.package.eslint": "(autodetect)",
|
"node.js.selected.package.eslint": "(autodetect)",
|
||||||
"node.js.selected.package.tslint": "(autodetect)",
|
"node.js.selected.package.tslint": "(autodetect)",
|
||||||
"nodejs_package_manager_path": "npm",
|
"nodejs_package_manager_path": "npm",
|
||||||
"settings.editor.selected.configurable": "preferences.pluginManager",
|
"settings.editor.selected.configurable": "preferences.pluginManager",
|
||||||
"vue.rearranger.settings.migration": "true"
|
"vue.rearranger.settings.migration": "true"
|
||||||
}
|
}
|
||||||
}</component>
|
}]]></component>
|
||||||
<component name="SharedIndexes">
|
<component name="SharedIndexes">
|
||||||
<attachedChunks>
|
<attachedChunks>
|
||||||
<set>
|
<set>
|
||||||
@ -55,9 +55,7 @@
|
|||||||
<option name="number" value="Default" />
|
<option name="number" value="Default" />
|
||||||
<option name="presentableId" value="Default" />
|
<option name="presentableId" value="Default" />
|
||||||
<updated>1753029706563</updated>
|
<updated>1753029706563</updated>
|
||||||
<workItem from="1753029707902" duration="14900000" />
|
<workItem from="1753029707902" duration="13206000" />
|
||||||
<workItem from="1753391066003" duration="37000" />
|
|
||||||
<workItem from="1753391114470" duration="1613000" />
|
|
||||||
</task>
|
</task>
|
||||||
<task id="LOCAL-00001" summary="Updated to reflect current nodejs setup for container template.">
|
<task id="LOCAL-00001" summary="Updated to reflect current nodejs setup for container template.">
|
||||||
<option name="closed" value="true" />
|
<option name="closed" value="true" />
|
||||||
@ -91,39 +89,7 @@
|
|||||||
<option name="project" value="LOCAL" />
|
<option name="project" value="LOCAL" />
|
||||||
<updated>1753119531742</updated>
|
<updated>1753119531742</updated>
|
||||||
</task>
|
</task>
|
||||||
<task id="LOCAL-00005" summary="reformatted README.md after initial repo setup fiasco...">
|
<option name="localTasksCounter" value="5" />
|
||||||
<option name="closed" value="true" />
|
|
||||||
<created>1753119737522</created>
|
|
||||||
<option name="number" value="00005" />
|
|
||||||
<option name="presentableId" value="LOCAL-00005" />
|
|
||||||
<option name="project" value="LOCAL" />
|
|
||||||
<updated>1753119737522</updated>
|
|
||||||
</task>
|
|
||||||
<task id="LOCAL-00006" summary="started outline for future.">
|
|
||||||
<option name="closed" value="true" />
|
|
||||||
<created>1753392186689</created>
|
|
||||||
<option name="number" value="00006" />
|
|
||||||
<option name="presentableId" value="LOCAL-00006" />
|
|
||||||
<option name="project" value="LOCAL" />
|
|
||||||
<updated>1753392186689</updated>
|
|
||||||
</task>
|
|
||||||
<task id="LOCAL-00007" summary="Added drop 4">
|
|
||||||
<option name="closed" value="true" />
|
|
||||||
<created>1753392506671</created>
|
|
||||||
<option name="number" value="00007" />
|
|
||||||
<option name="presentableId" value="LOCAL-00007" />
|
|
||||||
<option name="project" value="LOCAL" />
|
|
||||||
<updated>1753392506671</updated>
|
|
||||||
</task>
|
|
||||||
<task id="LOCAL-00008" summary="Drop 5 initial commit.">
|
|
||||||
<option name="closed" value="true" />
|
|
||||||
<created>1753392726730</created>
|
|
||||||
<option name="number" value="00008" />
|
|
||||||
<option name="presentableId" value="LOCAL-00008" />
|
|
||||||
<option name="project" value="LOCAL" />
|
|
||||||
<updated>1753392726730</updated>
|
|
||||||
</task>
|
|
||||||
<option name="localTasksCounter" value="9" />
|
|
||||||
<servers />
|
<servers />
|
||||||
</component>
|
</component>
|
||||||
<component name="TypeScriptGeneratedFilesManager">
|
<component name="TypeScriptGeneratedFilesManager">
|
||||||
@ -145,10 +111,6 @@
|
|||||||
<MESSAGE value="OK, now diff starting point" />
|
<MESSAGE value="OK, now diff starting point" />
|
||||||
<MESSAGE value="changed remote to see if it works." />
|
<MESSAGE value="changed remote to see if it works." />
|
||||||
<MESSAGE value="Whoops" />
|
<MESSAGE value="Whoops" />
|
||||||
<MESSAGE value="reformatted README.md after initial repo setup fiasco..." />
|
<option name="LAST_COMMIT_MESSAGE" value="Whoops" />
|
||||||
<MESSAGE value="started outline for future." />
|
|
||||||
<MESSAGE value="Added drop 4" />
|
|
||||||
<MESSAGE value="Drop 5 initial commit." />
|
|
||||||
<option name="LAST_COMMIT_MESSAGE" value="Drop 5 initial commit." />
|
|
||||||
</component>
|
</component>
|
||||||
</project>
|
</project>
|
@ -1,56 +0,0 @@
|
|||||||
**LinkedIn newsletter angle**
|
|
||||||
|
|
||||||
> **Series banner:**
|
|
||||||
> **“Edge Renaissance: putting compute—and the customer—back where they belong”** <sub>*A six‑part LinkedIn newsletter on turning every store into its own cloud & CDN—no moon‑shot budgets required.*</sub>
|
|
||||||
|
|
||||||
## The promise
|
|
||||||
|
|
||||||
This isn’t the “next big thing.” It’s the *original* thing: distribute work to the edge, keep latency low, delight customers. We’ll show how the same principle that built the Internet can let legacy retailers match Amazon‑style customer obsession—using hardware you already budget for and skills you already have.
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
### Updated multipart roadmap (with the new emphasis)
|
|
||||||
|
|
||||||
| Drop | Working title | Core takeaway | Who should lean in |
|
|
||||||
| ---------------- | -------------------------------------------------------- | -------------------------------------------------------------------------------------------------------- | ---------------------- |
|
|
||||||
| **0 (Teaser)** | *Back to Basics: Why the Store Closet Is the Real Cloud* | Decentralising compute isn’t groundbreaking; it’s good engineering hygiene that unlocks Amazon‑level CX. | Everyone |
|
|
||||||
| **1** | *Latency ≠ Luxury: The Revenue Math of Speed* | Faster pages & POS aren’t vanity metrics—they’re conversion, queue length and NPS drivers. | CFO, CMO |
|
|
||||||
| **2** | *Store‑in‑a‑Box: Hardware & Proxmox in Plain English* | Exactly what fits in a broom closet, costs under \$6 k, and replaces racks of DC gear. | CTO, Ops |
|
|
||||||
| **3** | *DIY CDN: Serving Shoppers From 50 Feet Away* | How in‑store caches beat third‑party CDNs on both speed and ownership. | Digital Marketing, Dev |
|
|
||||||
| **4** | *Edge Workloads That Win Hearts (and Wallets)* | Vision AI, live inventory badges, BOPIS orchestration—practical examples that scream “customer‑first.” | Merch, Product |
|
|
||||||
| **5** | *Governance, Compliance & Patching 500 Closets* | Proven patterns (GitOps, zero‑trust, Ceph snapshots) that keep regulators and auditors calm. | CISO, GRC |
|
|
||||||
| **6 (Capstone)** | *Road‑map & ROI: Your First 90 Stores* | Phased rollout, payback timeline, KPIs to watch. | Board, Strategy |
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
### Tone & stylistic guide
|
|
||||||
|
|
||||||
* **“Back‑to‑basics” voice.** Remind readers that distributing compute is the Internet’s default, not a shiny trend.
|
|
||||||
*Example line*: “We’re not inventing a new wheel, we’re just putting it back under the cart.”
|
|
||||||
* **Customer‑obsession lens first, cost lens second.**
|
|
||||||
*“Yes, you’ll slash egress fees— but the bigger prize is a sub‑100 ms experience that feels like magic.”*
|
|
||||||
* **Brevity for execs, depth for techies.** Top section = one‑minute read. Fold‑out section = diagrams, scripts, BOM.
|
|
||||||
* **Recurring Amazon contrast.** Frame each drop with: “Here’s how Amazon handles this; here’s how a legacy retailer can match it with edge clusters.”
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
### Draft teaser (Drop 0)
|
|
||||||
|
|
||||||
> **Back to Basics: Why the Store Closet Is the Real Cloud**
|
|
||||||
>
|
|
||||||
> A generation ago we pushed every workload into big glass buildings and even bigger public clouds. Latency climbed, costs followed, and the customer—well, they waited.
|
|
||||||
>
|
|
||||||
> The original Internet had a simpler rule: *put compute close to the user; let every node pull its weight.* Today a \$5 k, shoe‑box‑sized cluster can sit beside your POS, run real‑time vision AI, and serve your mobile site faster than any third‑party CDN—all while sidestepping egress fees.
|
|
||||||
>
|
|
||||||
> Over the next six drops I’ll show how legacy retailers can wield that simplicity to:
|
|
||||||
>
|
|
||||||
> * Cut page load times by 100 ms and grow revenue 8 %+ without touching the UI.
|
|
||||||
> * Turn a dark closet into a mini‑cloud *and* a micro‑PoP—no new contracts, no VMware licences.
|
|
||||||
> * Process terabytes of camera feeds on‑site, then sync only insights, not raw video.
|
|
||||||
> * Govern 500 closets with the same GitOps repo you use for the cloud.
|
|
||||||
>
|
|
||||||
> **Why care?** Because customer obsession isn’t about the shiniest tech stack; it’s about eliminating wait time—online, in line, every time. And you don’t need Amazon’s cap‑ex to get there.
|
|
||||||
>
|
|
||||||
> *Next week:* “Latency ≠ Luxury—The Revenue Math of Speed.” Subscribe and follow along; your closets are about to get interesting.
|
|
||||||
|
|
||||||
Ready for the first full installment? Point me to the drop you want drafted next and we’ll start shaping the copy and visuals.
|
|
@ -1,84 +0,0 @@
|
|||||||
**Drop 1 – Latency ≠ Luxury: the revenue math of shaving 100 ms**
|
|
||||||
|
|
||||||
<sup>*Part of the “Edge Renaissance” LinkedIn newsletter series.*</sup>
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
### ☕ Executive espresso (60‑second read)
|
|
||||||
|
|
||||||
* **100 ms matters.** Akamai’s retail study found that adding one‑tenth of a second chops **7 %** off conversions; Amazon engineers report the same pattern—every extra 100 ms dings revenue by \~1 %. ([The AI Journal][1])
|
|
||||||
* **Speed converts.** A joint Google/Deloitte analysis shows that trimming a mere **0.1 s** from load time lifts **e‑commerce conversions 8.4 %** and average order value 9.2 %. ([NitroPack][2])
|
|
||||||
* **Slowness repels.** As mobile pages slip from 1 s to 3 s, bounce probability jumps **32 %**. ([Google Business][3])
|
|
||||||
|
|
||||||
> **Bottom line:** latency isn’t a nice‑to‑have metric; it’s an unbudgeted tax on every transaction.
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## 1 Latency: the silent P\&L line‑item
|
|
||||||
|
|
||||||
Latency feels intangible because it never shows up on an invoice—yet its impact lands squarely on revenue:
|
|
||||||
|
|
||||||
| Delay added | Typical cause | Business impact |
|
|
||||||
| ---------------- | ------------------------------ | ---------------------------------------------- |
|
|
||||||
| **+20 ‑ 40 ms** | Cloud region 300 mi away | Customer sees spinners on PDP |
|
|
||||||
| **+30 ‑ 80 ms** | Third‑party CDN hop | Checkout JS waits for edge function |
|
|
||||||
| **+60 ‑ 120 ms** | Origin call back to datacentre | Cart update “hangs,” user re‑clicks |
|
|
||||||
| **+100 ms** | All of the above | ‑7 % conversions (Akamai), ‑1 % sales (Amazon) |
|
|
||||||
|
|
||||||
Legacy retailers often pay for all three delays at once—yet wonder why Amazon’s pages feel instant.
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## 2 Where the milliseconds hide
|
|
||||||
|
|
||||||
1. **Physical distance** – each 1 000 km ≈ 10‑12 ms RTT; cloud zones aren’t where your stores are.
|
|
||||||
2. **Handshake overhead** – TLS 1.3 still needs one round‑trip before the first byte.
|
|
||||||
3. **Chatty architectures** – microservices that call microservices multiply hops.
|
|
||||||
4. **Edge gaps** – static assets on a CDN, but APIs still trek to a far‑off origin.
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## 3 Why the store closet is the antidote
|
|
||||||
|
|
||||||
Putting compute **and** content in the store cuts every loop:
|
|
||||||
|
|
||||||
* **1‑digit‑ms POS & API calls** – KVM/LXC workloads run beside the tills.
|
|
||||||
* **Sub‑30 ms TTFB web assets** – Varnish/Nginx cache on the same three‑node cluster.
|
|
||||||
* **No middle‑man egress fees** – traffic hits the consumer using the store’s existing uplink.
|
|
||||||
|
|
||||||
Result: the customer’s phone talks to a server literally across the aisle instead of across the country.
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## 4 Quick math for the CFO
|
|
||||||
|
|
||||||
Assume a site doing \$500 M online revenue, 2.5 % baseline conversion:
|
|
||||||
|
|
||||||
* **Cut latency by 100 ms → +7 % conversions** → +\$35 M top‑line uplift.
|
|
||||||
* Cap‑ex for 500 store clusters @ \$6 k each = \$3 M (straight‑line over 4 yrs = \$0.75 M/yr).
|
|
||||||
* **ROI ≈ 46×** in year 1 before even counting egress savings.
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## 5 Action plan for Week 1
|
|
||||||
|
|
||||||
1. **Measure real‑world TTFB** –
|
|
||||||
|
|
||||||
```bash
|
|
||||||
curl -w "%{time_starttransfer}\n" -o /dev/null -s https://mystore.com
|
|
||||||
```
|
|
||||||
2. **Map the hops** – tracepath from a store Wi‑Fi to your cloud origin; every hop is \~0.5‑1 ms.
|
|
||||||
3. **Set a 100 ms SLA** from device to first byte; anything slower becomes a candidate for edge‑deployment.
|
|
||||||
4. **Pilot a “store‑in‑a‑box” cluster** serving just images & the `/inventory` API—validate the speed lift before moving heavier workloads.
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
### Coming up next ➡️ *“Store‑in‑a‑Box: Hardware & Proxmox in Plain English.”*
|
|
||||||
|
|
||||||
We’ll open the closet, list the exact BOM, and show how three shoebox‑sized nodes replace a city‑block of racks—without breaking the budget.
|
|
||||||
|
|
||||||
*Stay subscribed—your milliseconds depend on it.*
|
|
||||||
|
|
||||||
[1]: https://aijourn.com/every-millisecond-matters-the-latency-tax-nobody-budgets-for/ "Every Millisecond Matters: The Latency Tax Nobody Budgets For | The AI Journal"
|
|
||||||
[2]: https://nitropack.io/blog/post/how-page-speed-affects-conversion "How Page Speed Affects Your Conversion Rates"
|
|
||||||
[3]: https://www.thinkwithgoogle.com/marketing-strategies/app-and-mobile/page-load-time-statistics/?utm_source=chatgpt.com "Page load time statistics - Think with Google"
|
|
@ -1,136 +0,0 @@
|
|||||||
**Drop 2 – Store‑in‑a‑Box: Hardware & Proxmox in Plain English**
|
|
||||||
*Part of the LinkedIn series “Edge Renaissance: putting compute—and the customer—back where they belong.”*
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
### ☕ Executive espresso (60‑second read)
|
|
||||||
|
|
||||||
* **Three shoebox PCs ≈ one mini‑cloud.** For <\$6k/site you get HA, live‑migration, snapshots—no VMware tax.
|
|
||||||
* **It’s not about servers for servers’ sake.** This kit exists to shave 100 ms off every click and keep kiosks alive when the WAN dies.
|
|
||||||
* **Plain English stack:** Proxmox = the “operating system for your private cloud.” KVM runs full VMs, LXC runs lightweight containers, Ceph keeps copies of your data on all three boxes.
|
|
||||||
|
|
||||||
> **Bottom line:** You already power closets in every store. Drop in three nodes, wire them once, and you’ve got the platform to out‑Amazon Amazon on customer obsession—without their cap‑ex.
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## 1️⃣ What actually goes in the closet?
|
|
||||||
|
|
||||||
```
|
|
||||||
[ Node A ] [ Node B ] [ Node C ]
|
|
||||||
├─ CPU: 8–16 cores (Ryzen / Xeon-D)
|
|
||||||
├─ RAM: 64–128 GB
|
|
||||||
├─ NVMe: 2 × 1–2 TB (mirrored)
|
|
||||||
└─ NIC: 2 × 10/25 GbE
|
|
||||||
|
|
||||||
[ Switch ]
|
|
||||||
├─ 10/25 GbE for cluster replication
|
|
||||||
└─ 1 GbE uplink to store LAN/WAN
|
|
||||||
|
|
||||||
[ UPS ] ≈ 1500 VA line‑interactive unit
|
|
||||||
```
|
|
||||||
|
|
||||||
Space: half a rack or a wall‑mount cabinet. Power: <500 W total under load.
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## 2️⃣ Bill of materials (copy‑paste ready for LinkedIn)
|
|
||||||
|
|
||||||
```
|
|
||||||
GOOD (≈ $3.5k)
|
|
||||||
• 3 × Mini‑PC (Ryzen 7 / 64 GB / 2 × 1 TB NVMe) … $900 ea
|
|
||||||
• 1 × Fanless 10 GbE switch (8‑port) … $400
|
|
||||||
• 1 × 1500 VA UPS … $300
|
|
||||||
|
|
||||||
BETTER (≈ $5.5k)
|
|
||||||
• 3 × SFF server (Xeon‑D / 96 GB / 2 × 2 TB NVMe) … $1,400 ea
|
|
||||||
• 1 × 12‑port 25 GbE switch … $700
|
|
||||||
• 1 × Smart PDU + 2U wall rack … $300
|
|
||||||
|
|
||||||
BEST (≈ $8k+)
|
|
||||||
• 3 × Edge GPU nodes (RTX A2000 / 128 GB RAM) … $2,200 ea
|
|
||||||
• 1 × 25 GbE switch + SPF28 optics … $900
|
|
||||||
• Redundant UPS + environmental sensors … $500
|
|
||||||
```
|
|
||||||
|
|
||||||
*(Swap SKUs as vendors change—targets are core counts, RAM, NVMe, and dual NICs.)*
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## 3️⃣ Proxmox, demystified
|
|
||||||
|
|
||||||
* **Proxmox VE (Virtual Environment):** The web UI + API that manages everything. Think “VMware vSphere, but open‑source.”
|
|
||||||
* **KVM VMs:** Full OS instances (Windows POS, legacy apps).
|
|
||||||
* **LXC containers:** Lightweight Linux “jails” for APIs, caches, edge functions.
|
|
||||||
* **Ceph storage:** Each disk contributes to a shared pool; lose a node, data’s still there.
|
|
||||||
* **Proxmox Backup Server (PBS):** Built‑in, deduped backups to another box or S3 bucket.
|
|
||||||
|
|
||||||
> Translation: High availability and snapshots without buying a hyper‑converged appliance.
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## 4️⃣ How resilience actually works
|
|
||||||
|
|
||||||
```
|
|
||||||
Normal: All 3 nodes active → Ceph keeps 3 copies of data
|
|
||||||
Failure: Node B dies → workloads live‑migrate to A & C
|
|
||||||
Network: WAN drops → local DNS/cache/APIs keep serving
|
|
||||||
Recovery: Replace/repair node → Ceph heals automatically
|
|
||||||
```
|
|
||||||
|
|
||||||
No one calls IT; the store keeps ringing sales, kiosks keep scanning, mobile app keeps answering.
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## 5️⃣ Install & bootstrap in five steps
|
|
||||||
|
|
||||||
```bash
|
|
||||||
# 1. Image USB with Proxmox VE ISO and install on each node
|
|
||||||
# 2. Create a cluster on the first node
|
|
||||||
pvecm create store-$SITE_ID
|
|
||||||
|
|
||||||
# 3. Join the other nodes
|
|
||||||
pvecm add <IP_of_first_node>
|
|
||||||
|
|
||||||
# 4. Configure Ceph (3 mons, 3 OSDs)
|
|
||||||
pveceph install
|
|
||||||
pveceph createmon
|
|
||||||
pveceph osd create /dev/nvme1n1
|
|
||||||
|
|
||||||
# 5. Push your golden VMs/containers via Ansible/Terraform
|
|
||||||
ansible-playbook edge_bootstrap.yml -e site=$SITE_ID
|
|
||||||
```
|
|
||||||
|
|
||||||
*(We’ll publish the full playbook in Drop 6.)*
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## 6️⃣ “But do we really need three boxes?”
|
|
||||||
|
|
||||||
* **2 nodes** = cheaper, but no true quorum. You’ll need an external witness (tiny VPS).
|
|
||||||
* **3 nodes** = true HA + Ceph replication. This is the sweet spot.
|
|
||||||
* **1 node** = pilot only (no HA, but fine for a proof‑of‑value store).
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## 7️⃣ Tie it back to customer obsession (not just cost)
|
|
||||||
|
|
||||||
* **Faster everything:** APIs, PDP images, kiosk menus—served from 50 feet away.
|
|
||||||
* **Always on:** WAN outage? Your store experience doesn’t blink.
|
|
||||||
* **Personal, local, real:** The same cluster that runs inventory logic personalises promos on the PDP—because it has the freshest stock data.
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
### ✅ This week’s action list
|
|
||||||
|
|
||||||
1. **Pick your tier (Good/Better/Best)** and price it for 5 pilot stores.
|
|
||||||
2. **Order one cluster** and set it up in a lab/back office.
|
|
||||||
3. **Move 2 workloads first:** image cache + `/inventory` API. Measure the latency drop.
|
|
||||||
4. **Write a one‑pager** for execs: “Cost of three nodes vs. cost of 100 ms latency.”
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
### Next up ➡️ **Drop 3 – DIY CDN: Serving shoppers from 50 feet away**
|
|
||||||
|
|
||||||
We’ll turn this cluster into a location‑aware CDN so your digital customers get the same sub‑30 ms treatment.
|
|
||||||
|
|
||||||
*Stay subscribed—your broom closets are about to earn their keep.*
|
|
@ -1,96 +0,0 @@
|
|||||||
**Drop 3 – DIY CDN: Serving shoppers from 50 feet away**
|
|
||||||
*Part of the LinkedIn series “Edge Renaissance: putting compute—and the customer—back where they belong.”*
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
### ☕ Executive espresso (60‑second read)
|
|
||||||
|
|
||||||
* \*\*Why bother? \*\* Third‑party CDNs still push requests hundreds of miles; your stores already sit *next to the customer.* Turn each three‑node Proxmox cluster into a micro‑PoP and you cut the round‑trip by up to **180 ms**—the difference between “meh” and magic.
|
|
||||||
* **Speed sells.** Akamai found a **100 ms** delay dents conversions by **7 %** ([Akamai][1]), while Google / Deloitte showed a 0.1‑second boost lifts retail conversions **8.4 %** and AOV **9.2 %** ([Google Business][2]).
|
|
||||||
* **Own the edge, own the margin.** Commercial CDNs bill \~\$0.04‑\$0.05/GB at scale (Akamai calculator, 2025) ([BlazingCDN Blog][3]) and even small‑plan Cloudflare traffic costs **\$1/GB** after miniscule free tiers ([Cloudflare][4]). In‑store delivery rides bandwidth you’re *already* paying for.
|
|
||||||
|
|
||||||
> **Bottom line:** a private, location‑aware CDN isn’t a science project—it’s “back to basics” Internet architecture that converts better and costs less.
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## 1 Why roll your own instead of renting a PoP?
|
|
||||||
|
|
||||||
| Question senior execs ask | Third‑party CDN answer | Retail‑edge answer |
|
|
||||||
| ------------------------- | ------------------------------------------ | ------------------------------------------- |
|
|
||||||
| *How fast can we get?* | 40‑200 ms (public PoP → origin) | **< 30 ms TTFB**—cluster is in the building |
|
|
||||||
| *Who keeps the data?* | TLS keys & logs sit off‑prem | Everything stays in your closet |
|
|
||||||
| *What’s the true cost?* | Pay per GB forever + egress back to origin | One‑time cap‑ex; incremental \$0 |
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## 2 Anatomy of a **Retail Edge Delivery Network (REDN)**
|
|
||||||
|
|
||||||
```
|
|
||||||
[ Shopper’s phone ] ←Wi‑Fi / LTE→ [ Store closet ]
|
|
||||||
├── Varnish / Nginx (static cache)
|
|
||||||
├── WASM / Lua FX (per‑request logic)
|
|
||||||
├── KVM / LXC (POS, inventory API)
|
|
||||||
└── Ceph pool (replicated assets)
|
|
||||||
↑ nightly diff
|
|
||||||
[ S3 DR bucket ] ← WireGuard mesh →
|
|
||||||
```
|
|
||||||
|
|
||||||
*One shoebox‑sized cluster wears two hats:* it runs operational apps **and** serves front‑end assets + edge functions. No extra licences, no extra racks.
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## 3 What “50 feet away” feels like to the customer
|
|
||||||
|
|
||||||
| Scenario | Traditional path | REDN path | Result |
|
|
||||||
| ------------------------------- | ---------------------------------------- | ----------------------------------- | ----------------------------- |
|
|
||||||
| Product image on PDP | Phone → CDN PoP (300 mi) → Origin → Back | Phone → In‑store cache | Image paints **5‑10× faster** |
|
|
||||||
| “Pick up in 30 min?” badge | PDP JS → Cloud API → ERP | PDP JS → `/inventory` API on closet | Real‑time stock, no spinner |
|
|
||||||
| Vision‑AI loss prevention alert | Camera stream to cloud | GPU container on cluster | Sub‑50 ms alert, zero egress |
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## 4 Cost lens (after you bank the CX upside)
|
|
||||||
|
|
||||||
| Variable cost on 100 TB/mo | Commercial CDN | REDN |
|
|
||||||
| -------------------------- | ----------------------------------------------------- | --------------------------- |
|
|
||||||
| Transfer fees | 100 TB × \$0.045 = **\$4.5 k** ([BlazingCDN Blog][3]) | **\$0** (uses store uplink) |
|
|
||||||
| Cloud egress to origin | 10 TB × \$0.09 = **\$900** (typ. AWS) | **\$0–\$50** (delta sync) |
|
|
||||||
| TLS key escrow | Enterprise add‑on | **N/A** (you hold keys) |
|
|
||||||
|
|
||||||
*Hardware amortised over 4 yrs = <\$105/mo per store; ROI < 18 months.*
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## 5 Build‑it‑this‑week blueprint
|
|
||||||
|
|
||||||
1. **Add a CDN role** to the existing Proxmox cluster:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
pct create 1300 varnish-template --net0 name=eth0,bridge=vmbr0,ip=dhcp
|
|
||||||
```
|
|
||||||
2. **Pin assets** on the Ceph pool (`/ceph/cdn`).
|
|
||||||
3. **Deploy edge function** (promo injector) via containerised WASM runtime.
|
|
||||||
4. **Publish GeoDNS**—`cdn.example.com` resolves to store IP ranges, with a fallback to an S3‑backed origin.
|
|
||||||
5. **Wire nightly sync**: Proxmox Backup Server δ‑snapshots to a central bucket for DR.
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## 6 Customer‑obsessed use‑cases to steal today
|
|
||||||
|
|
||||||
* **Hyper‑local promos**: Edge function reads loyalty cookie + on‑hand stock, swaps hero banner only if the item is actually in aisle 7.
|
|
||||||
* **AR try‑on textures**: 4K assets live in the closet; shoppers on store Wi‑Fi stream instantly.
|
|
||||||
* **Real‑time order status**: BOPIS app hits a μ‑service next to the pick‑pack robots, not a far‑off DC.
|
|
||||||
* **Zero‑downtime kiosks**: Even if the ISP blips, cached JS + local APIs keep self‑checkout humming.
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
### Coming up next ➡️ *“Edge Workloads That Win Hearts (and Wallets).”*
|
|
||||||
|
|
||||||
We’ll dive into the AI vision, robotics, and inventory apps that turn this infrastructure into a true competitive moat.
|
|
||||||
|
|
||||||
*Stay subscribed—your customers, and your CFO, will thank you.*
|
|
||||||
|
|
||||||
[1]: https://www.akamai.com/newsroom/press-release/akamai-releases-spring-2017-state-of-online-retail-performance-report?utm_source=chatgpt.com "Akamai Online Retail Performance Report: Milliseconds Are Critical"
|
|
||||||
[2]: https://www.thinkwithgoogle.com/_qs/documents/9757/Milliseconds_Make_Millions_report_hQYAbZJ.pdf?utm_source=chatgpt.com "[PDF] Milliseconds Make Millions - Think with Google"
|
|
||||||
[3]: https://blog.blazingcdn.com/en-us/akamai-cdn-cost-calculator-2025 "Akamai Content Delivery Network CDN Cost Calculator for 2025"
|
|
||||||
[4]: https://www.cloudflare.com/plans/?utm_source=chatgpt.com "Our Plans | Pricing - Cloudflare"
|
|
@ -1,129 +0,0 @@
|
|||||||
**Drop 4 – Edge Workloads That Win Hearts (and Wallets)**
|
|
||||||
*Series: “Edge Renaissance—putting compute (and the customer) back where they belong.”*
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
### ☕ Executive espresso (60‑second read)
|
|
||||||
|
|
||||||
* **Move what customers *feel*.** Live inventory badges, instant BOPIS promises, zero‑lag self‑checkout, “we saw you needed help” alerts—these are edge wins, not cloud tricks.
|
|
||||||
* **Inference beats bandwidth.** Run vision AI and replenishment logic on‑site; sync only insights, not 4K video.
|
|
||||||
* **Start with two workloads:** one that boosts revenue (conversion, AOV) and one that cuts friction (queue time, NPS). Prove value fast, then expand.
|
|
||||||
|
|
||||||
> **Bottom line:** The closet cluster isn’t there for vanity metrics; it’s the engine for customer‑obsessed moments your competitors can’t match at WAN speeds.
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## 1️⃣ The three buckets of edge value
|
|
||||||
|
|
||||||
| Bucket | Customer moment | KPI it moves | Typical edge workload |
|
|
||||||
| ----------------- | ------------------------------------------------- | -------------------------- | --------------------------------------- |
|
|
||||||
| **Sell faster** | PDP shows “2 left—aisle 7” in real time | Conversion %, AOV | Live inventory API, dynamic promos |
|
|
||||||
| **Serve smarter** | Associate gets a “need help?” ping from vision AI | NPS / CSAT, queue length | Vision analytics, foot‑traffic heatmaps |
|
|
||||||
| **Stay open** | WAN dies, kiosks & POS keep humming | Lost sales avoided, uptime | Offline‑capable POS, local auth/caching |
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## 2️⃣ Workloads to push down first (and why)
|
|
||||||
|
|
||||||
```
|
|
||||||
1. Live inventory & BOPIS promises
|
|
||||||
• Pain: Cloud round-trips add 100+ ms → stale or missing stock data.
|
|
||||||
• Edge fix: Containerized /inventory API next to the ERP sync process.
|
|
||||||
• KPI: +X% PDP click‑to-cart, lower cancellations.
|
|
||||||
|
|
||||||
2. Vision AI (shrink, planogram, queue detection)
|
|
||||||
• Pain: Streaming 4K video to cloud = $$$ + latency.
|
|
||||||
• Edge fix: GPU or CPU inference on-node; send events only.
|
|
||||||
• KPI: Fewer walkouts, faster line opens, compliance hits.
|
|
||||||
|
|
||||||
3. Dynamic pricing / digital signage
|
|
||||||
• Pain: Central scheduler pushes daily; no real‑time react.
|
|
||||||
• Edge fix: WASM function reads local demand + margin rules.
|
|
||||||
• KPI: Margin lift, sell‑through on perishable items.
|
|
||||||
|
|
||||||
4. BOPIS / ship-from-store orchestration
|
|
||||||
• Pain: Picker waits on distant APIs; SLA slips.
|
|
||||||
• Edge fix: Local microservice allocates orders, talks to robots.
|
|
||||||
• KPI: SLA hit rate, pick time, labor cost.
|
|
||||||
|
|
||||||
5. AR/3D asset serving in-store Wi‑Fi
|
|
||||||
• Pain: Heavy textures → slow over WAN/CDN.
|
|
||||||
• Edge fix: Cache on Ceph; deliver from 50 feet away.
|
|
||||||
• KPI: Engagement time, demo-to-purchase rate.
|
|
||||||
```
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## 3️⃣ Customer-first framing for each workload
|
|
||||||
|
|
||||||
| Customer pain they notice | Edge pattern that fixes it | Tech blocks on Proxmox |
|
|
||||||
| --------------------------------- | ---------------------------------------------- | ---------------------------- |
|
|
||||||
| “Why is pickup 2 hours away?” | Local promise engine using fresh stock feed | LXC API svc + Ceph queue |
|
|
||||||
| “This kiosk is frozen…again” | Offline-first UI + local auth/cache | Nginx cache + SQLite replica |
|
|
||||||
| “No associate when I need one” | Vision AI triggers help alerts | CUDA/ROCm container + MQTT |
|
|
||||||
| “Page keeps spinning on my phone” | In‑store CDN for JS/images/API | Varnish + WASM workers |
|
|
||||||
| “Price on sign ≠ price in app” | Signage & app both hit same local rules engine | Shared container, REST API |
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## 4️⃣ How to choose *your* first two
|
|
||||||
|
|
||||||
Create a quick 2×2:
|
|
||||||
|
|
||||||
```
|
|
||||||
↑ Revenue impact
|
|
||||||
|
|
|
||||||
(A) | (B)
|
|
||||||
|
|
|
||||||
Implementation |----------------→ Ease / Speed to deploy
|
|
||||||
effort |
|
|
||||||
(C) | (D)
|
|
||||||
|
|
|
||||||
```
|
|
||||||
|
|
||||||
* **A:** Big money, easy win → do now
|
|
||||||
* **B:** Big money, harder → start POC in parallel
|
|
||||||
* **C/D:** Low money → bundle with others or defer
|
|
||||||
|
|
||||||
Most retailers land “/inventory API cache” in A and “vision AI queue detection” in B.
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## 5️⃣ Pattern: inference local, learning central
|
|
||||||
|
|
||||||
1. **Train centrally** (cloud GPUs, big data lake).
|
|
||||||
2. **Package model** (ONNX/TensorRT) and ship to stores via GitOps.
|
|
||||||
3. **Infer at the edge** (no raw data exfil).
|
|
||||||
4. **Return features/metrics only** for future re‑training.
|
|
||||||
|
|
||||||
Same principle works for recommendation engines, fraud checks, demand forecasting.
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## 6️⃣ Guardrails & governance
|
|
||||||
|
|
||||||
* **Version control everything**: models, edge functions, Varnish configs—Git is the source of truth.
|
|
||||||
* **Secret management**: Use Vault/Sealed Secrets; no API keys in containers.
|
|
||||||
* **Observability**: Batch logs to central Loki/Elastic; alert on drift (latency, miss rates).
|
|
||||||
* **Compliance**: Keep PII local where possible; roll‑ups only leave the site.
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## 7️⃣ This week’s action list
|
|
||||||
|
|
||||||
1. **Baseline latency & KPIs** for target workloads (e.g., PDP → add‑to‑cart time, queue length).
|
|
||||||
2. **Pick 2 workloads**: one revenue, one experience. Write a 1‑pager each: pain → edge fix → KPI.
|
|
||||||
3. **Build thin slices** on the pilot cluster:
|
|
||||||
|
|
||||||
* `/inventory` API cache container
|
|
||||||
* Small Varnish edge function injecting a promo
|
|
||||||
4. **Instrument results** (TTFB, conversion lift, queue minutes, etc.).
|
|
||||||
5. **Socialize wins** with a single chart: “100 ms faster → +X% revenue” or “0 outages during WAN blip.”
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
### Next up ➡️ **Drop 5 – Governance at the Edge: Security, Compliance, Resilience**
|
|
||||||
|
|
||||||
We’ll tackle the scary stuff: patching 500 closets, PCI scope, cert rotation, and what happens when a node dies at 2 AM.
|
|
||||||
|
|
||||||
*Stay subscribed—your edge is about to get audited.*
|
|
@ -1,170 +0,0 @@
|
|||||||
**Drop 5 – Governance at the Edge: Security, Compliance, Resilience (without 2 AM panics)**
|
|
||||||
*Series: “Edge Renaissance—putting compute (and the customer) back where they belong.”*
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
### ☕ Executive espresso (60‑second read)
|
|
||||||
|
|
||||||
* **500 closets ≠ 500 snowflakes.** Treat every store like a tiny cloud region: immutable builds, GitOps, and automated patch waves.
|
|
||||||
* **Keep sensitive stuff local, prove it centrally.** Shrink PCI/GDPR scope by processing and storing data in‑store, exporting only the minimum.
|
|
||||||
* **Assume nodes fail, links drop, auditors knock.** Backups, cert rotation, zero‑trust tunnels, and health probes are table stakes—so script them.
|
|
||||||
|
|
||||||
> **Bottom line:** Governance isn’t a tax on innovation—it’s the enabler that lets you scale edge wins without waking ops at 2 AM or failing your next audit.
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## 1️⃣ The four pillars of edge governance
|
|
||||||
|
|
||||||
| Pillar | Goal | Core patterns |
|
|
||||||
| -------------- | ----------------------------------- | ------------------------------------------- |
|
|
||||||
| **Security** | Only trusted code & people touch it | Zero‑trust mesh, signed images, Vault |
|
|
||||||
| **Compliance** | Prove control, minimize scope | Data locality, audit trails, policy‑as‑code |
|
|
||||||
| **Resilience** | Survive node/WAN failures | Ceph replicas, PBS backups, runbooks |
|
|
||||||
| **Operations** | Ship, patch, observe at scale | GitOps, canary waves, fleet telemetry |
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## 2️⃣ “Central brain, local autonomy” architecture
|
|
||||||
|
|
||||||
```
|
|
||||||
Git (single source of truth) ───► CI/CD (build, sign, scan)
|
|
||||||
│
|
|
||||||
▼
|
|
||||||
Artifact registry (images, configs)
|
|
||||||
│
|
|
||||||
┌──────────────┴──────────────┐
|
|
||||||
▼ ▼
|
|
||||||
Store Cluster A Store Cluster B ... (×500)
|
|
||||||
(pulls signed bundle) (pulls signed bundle)
|
|
||||||
```
|
|
||||||
|
|
||||||
* **Push nothing, let sites pull.** Firewalls stay tight; stores fetch on schedule over WireGuard.
|
|
||||||
* **Everything is versioned.** Configs, edge functions, models, Ceph rules—Git is law.
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## 3️⃣ Security: zero‑trust by default
|
|
||||||
|
|
||||||
```
|
|
||||||
🔐 Identity & Access
|
|
||||||
• Short‑lived certs for nodes (ACME) and humans (SSO + MFA)
|
|
||||||
• RBAC in Proxmox; no shared “root” logins
|
|
||||||
|
|
||||||
🧩 Code & Images
|
|
||||||
• SBOM for every container/VM
|
|
||||||
• Sign with Cosign; verify before deploy
|
|
||||||
|
|
||||||
🕳 Network
|
|
||||||
• WireGuard/VPN mesh, least‑privilege ACLs
|
|
||||||
• Local firewalls (nftables) deny by default
|
|
||||||
|
|
||||||
🗝 Secrets
|
|
||||||
• Vault/Sealed Secrets; no creds baked into images
|
|
||||||
• Auto‑rotate API keys & TLS every 60–90 days
|
|
||||||
```
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## 4️⃣ Compliance: make auditors smile (quickly)
|
|
||||||
|
|
||||||
| Common ask | Show them… | How edge helps |
|
|
||||||
| -------------------------------------- | ---------------------------------------------- | -------------------------------------------- |
|
|
||||||
| **PCI DSS 4.0**: “Where is card data?” | Data flow diagram + local tokenization service | Card data never leaves store LAN in raw form |
|
|
||||||
| **GDPR/CCPA**: Data minimization | Exported datasets with PII stripped | Only roll‑ups cross WAN; raw stays local |
|
|
||||||
| **SOC2 Change Mgmt** | Git history + CI logs | Every change is PR’d, reviewed, merged |
|
|
||||||
| **Disaster Recovery plan** | PBS snapshots + restore tests | Proven RPO/RTO per site, not promises |
|
|
||||||
|
|
||||||
> **Tip:** Automate evidence capture—export config/state hashes nightly to a central audit bucket.
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## 5️⃣ Resilience: design for “when,” not “if”
|
|
||||||
|
|
||||||
```
|
|
||||||
Node failure → Ceph 3× replication + live‑migration
|
|
||||||
WAN outage → Local DNS/cache/APIs keep serving; queue sync resumes later
|
|
||||||
Config rollback → Git revert + CI tag; clusters pull last good bundle
|
|
||||||
Store power loss → UPS ride‑through + graceful shutdown hooks
|
|
||||||
```
|
|
||||||
|
|
||||||
**Backup strategy:**
|
|
||||||
|
|
||||||
```
|
|
||||||
Nightly:
|
|
||||||
Proxmox Backup Server (PBS) → deduped snapshots → S3/cheap object store
|
|
||||||
Weekly:
|
|
||||||
Restore test (automated) on a staging cluster, report success/fail
|
|
||||||
Quarterly:
|
|
||||||
Full DR drill: rebuild a store cluster from bare metal scripts
|
|
||||||
```
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## 6️⃣ Operations: patch, observe, repeat
|
|
||||||
|
|
||||||
**Patch pipeline (example cadence):**
|
|
||||||
|
|
||||||
```
|
|
||||||
Mon 02:00 Build & scan images (CI)
|
|
||||||
Tue 10:00 Canary to 5 pilot stores
|
|
||||||
Wed 10:00 Wave 1 (50 stores) after health OK
|
|
||||||
Thu 10:00 Wave 2 (200 stores)
|
|
||||||
Fri 10:00 Wave 3 (rest)
|
|
||||||
```
|
|
||||||
|
|
||||||
**Observability stack:**
|
|
||||||
|
|
||||||
* **Metrics/logs:** Prometheus + Loki (local scrape → batched upstream).
|
|
||||||
* **SLOs to watch:**
|
|
||||||
|
|
||||||
* Cache hit rate (%), TTFB p95 (ms)
|
|
||||||
* POS transaction latency (ms)
|
|
||||||
* WAN availability (%), sync backlog (# items)
|
|
||||||
* Patch drift (stores on N‑2 version)
|
|
||||||
|
|
||||||
Set alerts on *trends*, not one‑off spikes.
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## 7️⃣ Example repo layout (GitOps ready)
|
|
||||||
|
|
||||||
```
|
|
||||||
edge-infra/
|
|
||||||
├─ clusters/
|
|
||||||
│ ├─ store-001/
|
|
||||||
│ │ ├─ inventory-api.yaml
|
|
||||||
│ │ └─ varnish-vcl.vcl
|
|
||||||
│ └─ store-002/ ...
|
|
||||||
├─ modules/
|
|
||||||
│ ├─ proxmox-node.tf
|
|
||||||
│ ├─ ceph-pool.tf
|
|
||||||
│ └─ wireguard-peers.tf
|
|
||||||
├─ policies/
|
|
||||||
│ ├─ opa/ (Rego rules for configs)
|
|
||||||
│ └─ kyverno/ (K8s/LXC guardrails)
|
|
||||||
├─ ci/
|
|
||||||
│ ├─ build-sign-scan.yml
|
|
||||||
│ └─ deploy-waves.yml
|
|
||||||
└─ docs/
|
|
||||||
├─ dr-runbook.md
|
|
||||||
├─ pci-dataflow.pdf
|
|
||||||
└─ sla-metrics.md
|
|
||||||
```
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## 8️⃣ This week’s action list
|
|
||||||
|
|
||||||
1. **Inventory governance gaps:** Which of the 4 pillars is weakest today? Rank them.
|
|
||||||
2. **Automate one scary thing:** e.g., cert rotation or nightly PBS snapshot verification.
|
|
||||||
3. **Define 3 SLOs & wire alerts:** TTFB p95, cache hit %, patch drift.
|
|
||||||
4. **Pilot the patch wave:** Pick 5 stores, run a full CI → canary → rollback drill.
|
|
||||||
5. **Create audit evidence bot:** Nightly job exports hashes/configs to “/audit/edge/YYYY‑MM‑DD.json”.
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
### Next up ➡️ **Drop 6 – Roadmap & ROI: Your First 90 Stores**
|
|
||||||
|
|
||||||
We’ll stitch it all together: sequencing, staffing, KPIs, and the board‑ready business case.
|
|
||||||
|
|
||||||
*Stay subscribed—now that your edge is safe, it’s time to scale it.*
|
|
@ -1,160 +0,0 @@
|
|||||||
**Drop 6 – Roadmap & ROI: Your First 90 Stores**
|
|
||||||
*Series capstone: “Edge Renaissance—putting compute (and the customer) back where they belong.”*
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
### ☕ Executive espresso (60‑second read)
|
|
||||||
|
|
||||||
* **Three phases, ninety stores, one playbook.** Pilot (≤5), Prove (≤30), Scale (≤90).
|
|
||||||
* **ROI is real—and fast.** 100 ms faster + higher uptime → +\$X M revenue; hardware amortizes in \~18 months.
|
|
||||||
* **Govern once, repeat everywhere.** Immutable builds, GitOps, patch waves. Treat each store like a tiny region.
|
|
||||||
* **Message to the board:** “We’re not reinventing—just putting compute back where customers are.”
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## 1️⃣ The 0‑5‑30‑90 rollout map
|
|
||||||
|
|
||||||
```
|
|
||||||
PHASE 0: Prep (4–6 weeks)
|
|
||||||
Goal: Tooling, golden images, KPIs defined
|
|
||||||
Outputs: Git repo, CI/CD, BOM finalized, latency baseline
|
|
||||||
|
|
||||||
PHASE 1: Pilot 5 (6–8 weeks)
|
|
||||||
Goal: Prove CX & $ impact with 2 workloads (e.g., /inventory API + image cache)
|
|
||||||
KPIs: TTFB ↓100 ms, conversion ↑≥5%, no POS downtime during WAN blips
|
|
||||||
Deliverables: Exec brief, ops runbooks, security sign‑off
|
|
||||||
|
|
||||||
PHASE 2: Prove 30 (8–12 weeks)
|
|
||||||
Goal: Add 2–3 more edge workloads (vision AI, promos), test patch waves
|
|
||||||
KPIs: Cache hit ≥90%, alert MTTR <15 min, patch drift ≤N‑1
|
|
||||||
Deliverables: Audit evidence automation, SLO dashboard, budget ask for scale
|
|
||||||
|
|
||||||
PHASE 3: Scale 90 (12–16 weeks)
|
|
||||||
Goal: Industrialized rollout kit; 3 waves of 30 stores
|
|
||||||
KPIs: 95% stores on latest bundle, <0.1% rollback rate
|
|
||||||
Deliverables: Playbook v1.0, board update, expansion roadmap (300+)
|
|
||||||
```
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## 2️⃣ Quick‑math ROI you can defend
|
|
||||||
|
|
||||||
**Inputs (example):**
|
|
||||||
|
|
||||||
* Online revenue = \$500 M/year, base conversion 2.5%
|
|
||||||
* Latency cut = 100 ms → +7–8% conversion (industry studies)
|
|
||||||
* Cap‑ex per store cluster (Good/Better tier) = \$5–6 k (4‑yr life)
|
|
||||||
* CDN/egress avoided = \$0.045/GB × 100 TB/mo ≈ \$4.5 k/mo
|
|
||||||
|
|
||||||
**Back‑of‑napkin:**
|
|
||||||
|
|
||||||
```
|
|
||||||
Revenue lift: $500M × 7% = +$35M/year
|
|
||||||
Hardware: 90 × $6k = $540k (=$135k/yr amortized)
|
|
||||||
CDN savings: ~$54k/yr (after expansion)
|
|
||||||
ROI (Year 1): (~$35M + $54k) / $675k ≈ 51×
|
|
||||||
```
|
|
||||||
|
|
||||||
*Swap in your numbers; the order of magnitude rarely changes.*
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## 3️⃣ People & process: who does what?
|
|
||||||
|
|
||||||
```
|
|
||||||
CORE EDGE PLATFORM SQUAD (8–10 FTE)
|
|
||||||
• Platform Lead (1) – roadmap, budget, exec comms
|
|
||||||
• SRE/Automation (2–3) – CI/CD, GitOps, patch waves
|
|
||||||
• Security/Compliance Eng (1–2) – policy as code, audits
|
|
||||||
• Edge App Owners (2–3) – /inventory API, promos, vision AI
|
|
||||||
|
|
||||||
REGIONAL / STORE TECH PARTNERS (as‑needed)
|
|
||||||
• “Smart hands” for racking, swaps
|
|
||||||
• Local networking tweaks
|
|
||||||
|
|
||||||
BUSINESS STAKEHOLDERS
|
|
||||||
• Digital Product, Merch, Ops – define the CX wins
|
|
||||||
• Finance – track realized savings & uplift
|
|
||||||
```
|
|
||||||
|
|
||||||
> **Rule:** Central team builds the pattern, sites pull it. No snowflakes.
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## 4️⃣ Operate like a cloud, even if it’s a closet
|
|
||||||
|
|
||||||
**Your top 6 SLOs (track weekly):**
|
|
||||||
|
|
||||||
1. **TTFB p95 (ms)** for key endpoints (PDP image, `/inventory`)
|
|
||||||
2. **Cache hit rate (%)** on Varnish/Nginx
|
|
||||||
3. **POS/API latency (ms)** during WAN events
|
|
||||||
4. **Patch drift (# stores on N‑2 or older)**
|
|
||||||
5. **Backup success rate (%)** (PBS snapshots)
|
|
||||||
6. **MTTR for node failure (mins/hours)**
|
|
||||||
|
|
||||||
Dashboards: Grafana/Loki summaries pushed centrally nightly; alerts on trends.
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## 5️⃣ Board‑ready narrative (5 slides)
|
|
||||||
|
|
||||||
1. **Why now:** Latency is a silent tax; we’re over‑spending on cloud/CDN; Amazon wins on speed.
|
|
||||||
2. **What we’re doing:** Put compute and delivery where customers are—stores & DCs—using Proxmox on commodity gear.
|
|
||||||
3. **Proof:** Pilot results—100 ms faster → +X% revenue, \$Y saved in egress, 0 outages on WAN loss.
|
|
||||||
4. **Plan & risk:** 0‑5‑30‑90 rollout, governance pillars, automated compliance.
|
|
||||||
5. **Ask:** \$Z cap‑ex, 10 FTE cross‑functional team, payback <18 months.
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## 6️⃣ Risk register (and the auto‑mitigations)
|
|
||||||
|
|
||||||
| Risk | Mitigation baked in |
|
|
||||||
| ----------------------- | ------------------------------------------ |
|
|
||||||
| Node dies in peak hours | Ceph 3× replica + live‑migration |
|
|
||||||
| Patch breaks store | Canary waves + fast rollback via Git tag |
|
|
||||||
| WAN outage | Local DNS/APIs, queued sync jobs |
|
|
||||||
| Audit fails | Automated evidence exports; policy‑as‑code |
|
|
||||||
| Drift / config sprawl | Immutable bundles, Git as SOoT |
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## 7️⃣ Timeline & dollars (visual you can paste)
|
|
||||||
|
|
||||||
```
|
|
||||||
Q1 Prep & Pilot (5 stores) $ 75k (gear + labor)
|
|
||||||
Q2 Prove @ 30 stores $ 180k
|
|
||||||
Q3 Scale wave 1 (30 stores) $ 180k
|
|
||||||
Q4 Scale wave 2 (30 stores) $ 180k
|
|
||||||
-----------------------------------------
|
|
||||||
YEAR 1 CAP-EX / OPEX ≈ $615k
|
|
||||||
|
|
||||||
Projected Year-1 Upside $35M+ revenue lift + $54k cost saved
|
|
||||||
```
|
|
||||||
|
|
||||||
*(Adjust “gear” line if you choose GPU nodes or higher tiers.)*
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## 8️⃣ This week’s action list
|
|
||||||
|
|
||||||
1. **Finalize KPIs & baselines** (latency, conversion, uptime).
|
|
||||||
2. **Draft the board deck** with the 5‑slide narrative above.
|
|
||||||
3. **Lock the pilot scope**: 2 workloads, 5 stores, 8‑week clock.
|
|
||||||
4. **Stand up the repo & CI/CD** (even if empty) to anchor governance.
|
|
||||||
5. **Book the Phase‑gate reviews** now (Pilot exit, 30‑store exit).
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
### 🎁 Series wrap & what’s next
|
|
||||||
|
|
||||||
* **Appendix pack (on request):** BOM spreadsheet, CI pipeline YAML, audit evidence script.
|
|
||||||
* **Office hours / webinar?** If there’s interest, I’ll host a live walkthrough.
|
|
||||||
* **Spin‑offs:**
|
|
||||||
|
|
||||||
* “Edge ML Ops: packaging & shipping models to 500 sites”
|
|
||||||
* “From closets to parking lots: EV chargers & edge compute”
|
|
||||||
* “Design patterns for zero‑trust store networks”
|
|
||||||
|
|
||||||
> **Thank you for riding along.** This wasn’t about “new tech”—it was about rediscovering what made the Internet (and great retail) work: put value as close to the customer as you can, and don’t pay rent on distance.
|
|
||||||
|
|
||||||
*Hit follow, drop questions in the comments, or DM for the appendix. Your closets are ready to scale.*
|
|
@ -1,56 +0,0 @@
|
|||||||
**LinkedIn newsletter angle**
|
|
||||||
|
|
||||||
> **Series banner:**
|
|
||||||
> **“Edge Renaissance: putting compute—and the customer—back where they belong”** <sub>*A six‑part LinkedIn newsletter on turning every store into its own cloud & CDN—no moon‑shot budgets required.*</sub>
|
|
||||||
|
|
||||||
## The promise
|
|
||||||
|
|
||||||
This isn’t the “next big thing.” It’s the *original* thing: distribute work to the edge, keep latency low, delight customers. We’ll show how the same principle that built the Internet can let legacy retailers match Amazon‑style customer obsession—using hardware you already budget for and skills you already have.
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
### Updated multipart roadmap (with the new emphasis)
|
|
||||||
|
|
||||||
| Drop | Working title | Core takeaway | Who should lean in |
|
|
||||||
| ---------------- | -------------------------------------------------------- | -------------------------------------------------------------------------------------------------------- | ---------------------- |
|
|
||||||
| **0 (Teaser)** | *Back to Basics: Why the Store Closet Is the Real Cloud* | Decentralising compute isn’t groundbreaking; it’s good engineering hygiene that unlocks Amazon‑level CX. | Everyone |
|
|
||||||
| **1** | *Latency ≠ Luxury: The Revenue Math of Speed* | Faster pages & POS aren’t vanity metrics—they’re conversion, queue length and NPS drivers. | CFO, CMO |
|
|
||||||
| **2** | *Store‑in‑a‑Box: Hardware & Proxmox in Plain English* | Exactly what fits in a broom closet, costs under \$6 k, and replaces racks of DC gear. | CTO, Ops |
|
|
||||||
| **3** | *DIY CDN: Serving Shoppers From 50 Feet Away* | How in‑store caches beat third‑party CDNs on both speed and ownership. | Digital Marketing, Dev |
|
|
||||||
| **4** | *Edge Workloads That Win Hearts (and Wallets)* | Vision AI, live inventory badges, BOPIS orchestration—practical examples that scream “customer‑first.” | Merch, Product |
|
|
||||||
| **5** | *Governance, Compliance & Patching 500 Closets* | Proven patterns (GitOps, zero‑trust, Ceph snapshots) that keep regulators and auditors calm. | CISO, GRC |
|
|
||||||
| **6 (Capstone)** | *Road‑map & ROI: Your First 90 Stores* | Phased rollout, payback timeline, KPIs to watch. | Board, Strategy |
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
### Tone & stylistic guide
|
|
||||||
|
|
||||||
* **“Back‑to‑basics” voice.** Remind readers that distributing compute is the Internet’s default, not a shiny trend.
|
|
||||||
*Example line*: “We’re not inventing a new wheel, we’re just putting it back under the cart.”
|
|
||||||
* **Customer‑obsession lens first, cost lens second.**
|
|
||||||
*“Yes, you’ll slash egress fees— but the bigger prize is a sub‑100 ms experience that feels like magic.”*
|
|
||||||
* **Brevity for execs, depth for techies.** Top section = one‑minute read. Fold‑out section = diagrams, scripts, BOM.
|
|
||||||
* **Recurring Amazon contrast.** Frame each drop with: “Here’s how Amazon handles this; here’s how a legacy retailer can match it with edge clusters.”
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
### Draft teaser (Drop 0)
|
|
||||||
|
|
||||||
> **Back to Basics: Why the Store Closet Is the Real Cloud**
|
|
||||||
>
|
|
||||||
> A generation ago we pushed every workload into big glass buildings and even bigger public clouds. Latency climbed, costs followed, and the customer—well, they waited.
|
|
||||||
>
|
|
||||||
> The original Internet had a simpler rule: *put compute close to the user; let every node pull its weight.* Today a \$5 k, shoe‑box‑sized cluster can sit beside your POS, run real‑time vision AI, and serve your mobile site faster than any third‑party CDN—all while sidestepping egress fees.
|
|
||||||
>
|
|
||||||
> Over the next six drops I’ll show how legacy retailers can wield that simplicity to:
|
|
||||||
>
|
|
||||||
> * Cut page load times by 100 ms and grow revenue 8 %+ without touching the UI.
|
|
||||||
> * Turn a dark closet into a mini‑cloud *and* a micro‑PoP—no new contracts, no VMware licences.
|
|
||||||
> * Process terabytes of camera feeds on‑site, then sync only insights, not raw video.
|
|
||||||
> * Govern 500 closets with the same GitOps repo you use for the cloud.
|
|
||||||
>
|
|
||||||
> **Why care?** Because customer obsession isn’t about the shiniest tech stack; it’s about eliminating wait time—online, in line, every time. And you don’t need Amazon’s cap‑ex to get there.
|
|
||||||
>
|
|
||||||
> *Next week:* “Latency ≠ Luxury—The Revenue Math of Speed.” Subscribe and follow along; your closets are about to get interesting.
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user